

CSE 291: Operating Systems in Datacenters

Amy Ousterhout

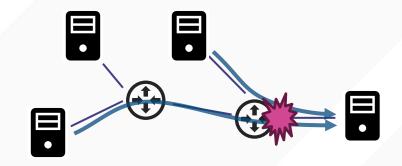
Oct. 19, 2023

UC San Diego

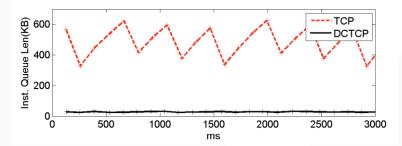
Agenda for Today

- Announcements + reminders
- Background on congestion control in datacenters
- Homa discussion
- Swift discussion
- Homa vs. Swift discussion

Reminders


- Research project
 - Proposals due Monday 10/23 at 11:59 pm
 - Check ins next week see Canvas to sign up
- Office hours today: 2:30-3:30 pm
- For Tuesday:
 - No need to review the "Killer Microseconds" paper
 - Do submit a review for Shenango

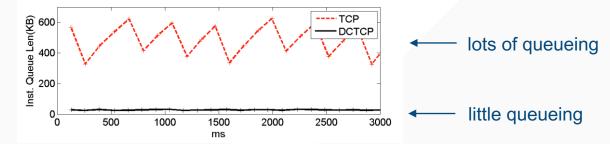
Congestion Control in Datacenters


Network Congestion

- Traffic flows compete for use of the network
- Congestion control: determines which flow gets to send when and at what rate

TCP

- Congestion window (cwnd): number of bytes that can be outstanding at once
- TCP adjusts the cwnd based on additive increase/multiplicative decrease (AIMD)
 - No congestion: cwnd += 1
 - Congestion: cwnd = cwnd / 2
- Detect congestion when a packet is dropped


"saw-tooth" pattern

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). SIGCOMM '10.

DCTCP

threshold

- TCP does not work well in datacenters
 - Large "background" flows cause queueing in the network
 - Latency-sensitive "foreground" traffic suffers from high latency
- Particularly bad with partition/aggregate workloads
 - Applications need low tail latency (e.g., 99.9%)
- Goal: decrease the sending rate before the queues fill up
 - Mark packets when queueing exceeds a threshold

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). SIGCOMM '10.

What is optimal?

- Goal: minimize the average time to send a message
- Optimal policy: shortest remaining processing time (SRPT)
 - Sends the message with the fewest bytes remaining first
- Challenges with SRPT
 - Need to know the message size
 - May starve long messages
 - Not necessarily optimal with multiple switches
- Many protocols approximate SRPT
 - pFabric, PIAS, pHost, Homa

Congestion Control in Datacenters

- Several different types
 - Endhost only: TCP, Swift
 - Switch feedback: ECN, DCTCP, XCP
 - Switch scheduling: pFabric, QJump, PDQ
 - Centralized: Fastpass
 - Receiver/credit-based: Homa, NDP, pHost, ExpressPass

Homa Discussion Swift Discussion